Math, asked by suyog2086, 9 months ago

prove that cosA / CosA -SINA -COSA /COSA+SINA = TAN2A

Answers

Answered by sandy1816
4

Answer:

</p><p>{\red{\underline{\underline{\huge{\mathfrak\pink {your\:answer\:attached\:in\:the\:photo}}}}}}

Attachments:
Answered by sonuvuce
3

The proof is given below:

To Prove

\frac{\cos A}{\cos A-\sin A}-\frac{\cos A}cos A+\sin A}=\tan 2A

LHS

=\frac{\cos A}{\cos A-\sin A}-\frac{\cos A}cos A+\sin A}

=\cos A(\frac{1}{\cos A-\sin A}-\frac{1}{\cos A+\sin A}

=\cos A(\frac{(\cos A+\sin A)-(\cos A-\sin A)}{(\cos A-\sin A)(\cos A+\sin A)})

=\cos A(\frac{\cos A+\sin A-\cos A+\sin A}{\cos^A-\sin^A}      [∵ a²-b²=(a+b)(a-b)]

=\frac{\cos A\times 2\sin A}{\cos 2A}     (∵\cos^2 A-\sin^2 A=\cos 2A)

=\frac{2\sin A\cos A}{\cos 2A}

=\frac{\sin 2A}{\cos 2A}           (∵ \sin 2A=2\sin A\cos A)

=\tan 2A

= RHS                          (Proved)

Hope this answer is helpful.

Know More:

https://brainly.in/question/17926346

Similar questions