prove that cosA-cosB+cosC+1=4cosA/2.sinB/2.cosC/2
Answers
Answer:
CosA - CosB + CosC + 1 = 4 Cos(A/2)Sin(B/2)Cos(C/2)
Step-by-step explanation:
cosA-cosB+cosC+1=4cosA/2.sinB/2.cosC/2
Complete Question : A , B & C are angles of a triangles
=> A + B + C = 180°
LHS
= CosA - CosB + CosC + 1
= (CosA + CosC) - CosB + 1
= (2Cos((A+C)/2)Cos((A-C)/2)) - CosB + 1
= 2Cos((π - B)/2)Cos((A-C)/2)) - CosB + 1
= 2Sin(B/2)Cos((A-C)/2) - (1-2Sin²B/2) + 1
= 2Sin(B/2)Cos((A-C)/2) - 1 + 2Sin²B/2 + 1
= 2(Sin(B/2)Cos((A-C)/2) + 2Sin²B/2
= 2(Sin(B/2) (Cos((A-C)/2) + Sin(B/2))
= 2Sin(B/2)(Cos((A-C)/2) +Sin((π - (A+C)/2))
= 2Sin(B/2)(Cos((A-C)/2) + Cos(A+C)/2))
= 2Sin(B/2)(Cos((A-C)/2) + Cos(A+C)/2))
= 2Sin(B/2) 2Cos(A/2)Cos(-C/2)
= 2Sin(B/2) 2Cos(A/2)Cos(C/2)
= 4 Cos(A/2)Sin(B/2)Cos(C/2)
QED
Proved
CosA - CosB + CosC + 1 = 4 Cos(A/2)Sin(B/2)Cos(C/2)