Math, asked by grey0shadow, 7 months ago

Prove that:

cosa + cosb + cosc + cos (a +b +c) = 4 cos(a+b/2).cos (b+c/2).cos (c+a/2)​

Answers

Answered by senboni123456
2

Step-by-step explanation:

Let, a= 'α', b= 'β' & c= 'γ'

we have,

 \cos( \alpha )  +  \cos( \beta ) +   \cos( \gamma )  +  \cos( \alpha +   \beta +   \gamma )

Applying C & D formulas,

 =2 \cos( \frac{ \alpha   + \beta }{2} )  \cos( \frac{ \alpha -   \beta}{2} )  + 2 \cos(  \frac{ \alpha +   \beta }{2} +   \gamma )  \cos( \frac{ \alpha +   \beta }{2} )

 = 2 \cos( \frac{ \alpha  +  \beta }{2} ) ( \cos( \frac{  \alpha -  \beta }{2} )  +  \cos( \frac{  \alpha  +  \beta }{2} +  \gamma  ) )

 = 2 \cos( \frac{  \alpha + \beta  }{2} ) (2 \cos( \frac{ \alpha  +  \gamma }{2} )  \cos(  \frac{\beta  +  \gamma}{2}  ) )

putting α= a, β= b, γ=c,

 = 4 \cos( \frac{a + b}{2} ) \cos( \frac{b + c}{2} )   \cos( \frac{c + a}{2} )

Similar questions