Prove that :- CosA + CosB + CosC + Cos(a + B+ C) = 4 CosA+B/2 CosB+C/2 CosC+A/2
Answers
Answered by
1
Answer:
cos a + cos b + cos c + cos (a+b+c)
=2 cos ((a+b)/2) cos ((a-b)/2) + 2 cos ((c+a+b+c)/2) cos ((c-a-b+c)/2)
= 2cos((a+b)/2)cos((a-b)/2) + 2cos((a+b+2c)/2)cos((-a-b)/2)
= 2cos((a+b)/2)cos((a-b)/2) + 2cos((a+b+2c)/2)cos((-(a+b))/2)
Remember cos(-x) = cos x and cos a + cos b is 2cos((a+b)/2)
= 2cos((a+b)/2)cos((a-b)/2) + 2cos((a+b+2c)/2)cos((a+b)/2)
2cos((a+b)/2) is taken common
= 2 cos ((a+b)/2) { cos ((a-b)/2) + cos ((a+b+2c)/2) }
= 2 cos ((a+b)/2) { 2cos((a-b+a+b+2c)/2*2) cos(a-b-a-b-2c)/2*2) }
= 2 cos ((a+b)/2) { 2 cos ((2a+2c)/4) cos((-2b-2c)/4) }
= 4 cos ((a+b)/2) cos ((a+c)/2) cos ((b+c)/2)
Answered by
0
Answer:
uhdhhdhehhhduusuhschixugsgshuzhss
Similar questions