Math, asked by mohammadfarhansadik, 2 months ago

Prove that, (cosA+cosecA-1)/(cosA-cosecA+1)=(1+cosA)(cosecA)

Answers

Answered by Anonymous
4

Answer:

Check the above attachment for ur answer

Hope It helps U

Attachments:
Answered by AestheticSky
9

Correct question:-

prove that :-

\sf\dfrac{CotA+CosecA-1}{CotA-CosecA+1} = \sf (1+CosA)(CosecA)

Solution:-

\sf\dfrac{CotA+CosecA-1}{CotA-CosecA+1}

\sf\dfrac{CotA+CosecA-(Cosec²A-Cot²A)}{CotA-CosecA+1}

\sf\dfrac{CotA+CosecA-[(CosecA+CotA)(CosecA-CotA)}{CotA-CosecA+1}

\sf\dfrac{CotA+CosecA[1-(CosecA-CotA)]}{CotA-CosecA+1}

\sf\cancel\dfrac{CotA+CosecA(1-CosecA+CotA)}{CotA-CosecA+1}

\sf CotA+CosecA

\sf\dfrac{CosA}{SinA}+\dfrac{1}{SinA}

\sf\dfrac{CosA+1}{SinA}

\sf (CosA+1)(CosecA) = R.H.S

Similar questions