Math, asked by MartinHembrom, 11 months ago

prove that:( cosA/cosecA+1 )+(cosA/cosecA-1)=2tanA

Answers

Answered by raikushagra2017
0

Answer:

aagaya bhai.............

Attachments:
Answered by Mankuthemonkey01
10

To Prove

\sf\frac{cosA}{cosecA+1}+\frac{cosA}{cosecA-1}=2tanA

Proof

Taking LHS,

\sf\frac{cosA}{cosecA+1}+\frac{cosA}{cosecA-1}

\sf cosA(\frac{1}{cosecA+1}+ \frac{1}{cosecA-1})

Taking LCM

\sf cosA(\frac{cosecA-1+cosecA+1}{(cosecA+1)(cosecA-1)})

Using (a +b)(a - b) = a² - b²

\sf cosA(\frac{2cosecA}{cosec^2A-1})

Using cosec²∅ - 1 = cot²∅, we get

\sf cosA(\frac{2cosecA}{cot^2A})

\sf \frac{2cosA}{sinA}(\frac{1}{cot^2A}) (since, cosecA = 1/sinA)

\sf \frac{2cotA}{cot^2A}

(since, cosA/sinA = cotA)

\sf \frac{2}{cotA}

\sf 2 tanA

(since, tanA = 1/cotA)

= RHS

Hence Proved

Similar questions