Math, asked by satishraj3, 11 months ago

prove that cosA-sinA+1/cos A+sinA-1=cosecA+cotA​

Answers

Answered by RvChaudharY50
193

Question :--- prove that (cosA-sinA+1) / (cos A+sinA-1) = (cosecA+cotA)

Formula used :---

  • CosA/sinA = cotA
  • 1/sinA = cosA
  • 1 = cosec²A - cot²A
  • (a² - b²) = (a+b)(a-b)

Solution :---

→ (cos A- sin A + 1) / (cos A + sin A - 1).

Divide both numerator and the denominator by sinA we get ,,

(cosec A + cot A - 1)/(cotA - cosec A +1)

Now, Putting value of 1 = cosec²A - cot²A = (cosecA + cotA)(cosecA - cotA) in Numerator we get,

{(cosecA+cotA)-(cosecA+cotA)(cosecA-cotA)} / (cotA - cosec A +1)

Taking (cosecA+cotA) common From Numerator Now, we get,

[(cosecA+cotA){1-(cosecA-cotA)}] / (cotA - cosec A +1)

→ (cosecA+cotA)(cotA-cosecA+1) / (cotA - cosec A +1)

(cotA - cosec A +1) will be cancel now

So, we get,

==>>> (cosecA+cotA)

✪✪ Hence Proved ✪✪

Similar Question :---

Pls prove this question.

https://brainly.in/question/14417354?utm_source=android&utm_medium=share&utm_campaign=question

Answered by parth8564
0

Answer:

nvnnnn

Step-by-step explanation:

that hggfttgjjkn h

Similar questions