Math, asked by Amulyatr, 1 year ago

Prove that ( cosA- sinA+1)( cosA+ sin A-1)= cosecA+ cotA

Answers

Answered by rohitkumargupta
22
HELLO DEAR,

i think your something mistake in your questions

right questions is like that

Prove that:- ( cosA- sinA+1) / ( cosA+ sin A-1)= cosecA+ cotA
\frac{( \cos \alpha   -  \sin \alpha   + 1) }{( \cos \alpha   +  \sin\alpha   - 1) } \\  =  > \frac{ \sin \alpha ( \cos \alpha   -  \sin \alpha   + 1) }{ \sin \alpha ( \cos \alpha   +  \sin \alpha   - 1) }   \\  =  >  \frac{ \sin \alpha \times   \cos \alpha   -  {sin}^{2}  \alpha  + sin \alpha  }{\sin \alpha ( \cos \alpha   +  \sin \alpha   - 1)}  \\  =  >  \frac{sin \alpha  \times cos \alpha  - (1 -  {cos}^{2} \alpha ) + sin \alpha  }{\sin \alpha ( \cos \alpha   +  \sin \alpha   - 1)}  \\  =  >  \frac{sin \alpha  \times cos \alpha   + sin \alpha -( 1  -   {cos}  \alpha) ( 1 + cos \alpha )  }{\sin \alpha ( \cos \alpha   +  \sin \alpha   - 1)}  \\  =  >  \frac{ \sin \alpha(1 +  \cos \alpha ) - ( 1  -   {cos}  \alpha) ( 1 + cos \alpha )}{\sin \alpha ( \cos \alpha   +  \sin \alpha   - 1)}  \\  =  >  \frac{(1 + cos \alpha )(sin \alpha  - 1 + cos \alpha )}{\sin \alpha ( \cos \alpha   +  \sin \alpha  - 1)}  \\   =  >  \frac{1 + cos \alpha }{ \sin\alpha  }  \\  =  >  \frac{1}{ \sin \alpha  }  +  \frac{ \cos \alpha  }{ \sin  \alpha }  \\  = cosec \alpha  +  \cot \alpha
I HOPE ITS HELP YOU DEAR,
THANKS
Answered by anshika1020
5
Hello...

Question :- Prove that ( cosA- sinA+1)( cosA+ sin A-1)= cosecA+ cotA
Attachments:
Similar questions