Math, asked by Amulyatr, 1 year ago

prove that ( cosA - sinA +1) ( cosA + sinA -1)= cosecA+cotA

Answers

Answered by rohitkumargupta
5
HELLO DEAR,

I THINK SOMETHING IS MISTAKE IN YOUR QUESTIONS

RIGHT QUESTIONS IS LIKE THAT:-

( cosA - sinA +1)/ ( cosA + sinA -1)= cosecA+cotA

\frac{( \cos \alpha - \sin \alpha + 1) }{( \cos \alpha + \sin\alpha - 1) } \\ = > \frac{ \sin \alpha ( \cos \alpha - \sin \alpha + 1) }{ \sin \alpha ( \cos \alpha + \sin \alpha - 1) } \\ = > \frac{ \sin \alpha \times \cos \alpha - {sin}^{2} \alpha + sin \alpha }{\sin \alpha ( \cos \alpha + \sin \alpha - 1)} \\ = > \frac{sin \alpha \times cos \alpha - (1 - {cos}^{2} \alpha ) + sin \alpha }{\sin \alpha ( \cos \alpha + \sin \alpha - 1)} \\ = > \frac{sin \alpha \times cos \alpha + sin \alpha -( 1 - {cos} \alpha) ( 1 + cos \alpha ) }{\sin \alpha ( \cos \alpha + \sin \alpha - 1)} \\ = > \frac{ \sin \alpha(1 + \cos \alpha ) - ( 1 - {cos} \alpha) ( 1 + cos \alpha )}{\sin \alpha ( \cos \alpha + \sin \alpha - 1)} \\ = > \frac{(1 + cos \alpha )(sin \alpha - 1 + cos \alpha )}{\sin \alpha ( \cos \alpha + \sin \alpha - 1)} \\ = > \frac{1 + cos \alpha }{ \sin\alpha } \\ = > \frac{1}{ \sin \alpha } + \frac{ \cos \alpha }{ \sin \alpha } \\ = cosec \alpha + \cot \alpha
I HOPE ITS HELP YOU DEAR,
THANKS
Answered by anshika1020
1
Hello...

Question :- Prove that ( cosA- sinA+1)( cosA+ sin A-1)= cosecA+ cotA
Attachments:

krrish1211: hello anshika
Similar questions