Math, asked by Amulyatr, 1 year ago

prove that ( cosA - sinA +1) ( cosA+ sinA-1)= cosecA+cotA

Answers

Answered by KanikAb
6
(CosA-sinA+1)/(cosA+sinA -1) =cosecA +cotA proved
Attachments:
Answered by rohitkumargupta
6
HELLO DEAR,

I THINK SOMETHING IS MISTAKE IN YOUR QUESTIONS

RIGHT QUESTIONS IS LIKE THAT:-

( cosA - sinA +1) /( cosA+ sinA-1)= cosecA+cotA
\frac{( \cos \alpha - \sin \alpha + 1) }{( \cos \alpha + \sin\alpha - 1) } \\ = > \frac{ \sin \alpha ( \cos \alpha - \sin \alpha + 1) }{ \sin \alpha ( \cos \alpha + \sin \alpha - 1) } \\ = > \frac{ \sin \alpha \times \cos \alpha - {sin}^{2} \alpha + sin \alpha }{\sin \alpha ( \cos \alpha + \sin \alpha - 1)} \\ = > \frac{sin \alpha \times cos \alpha - (1 - {cos}^{2} \alpha ) + sin \alpha }{\sin \alpha ( \cos \alpha + \sin \alpha - 1)} \\ = > \frac{sin \alpha \times cos \alpha + sin \alpha -( 1 - {cos} \alpha) ( 1 + cos \alpha ) }{\sin \alpha ( \cos \alpha + \sin \alpha - 1)} \\ = > \frac{ \sin \alpha(1 + \cos \alpha ) - ( 1 - {cos} \alpha) ( 1 + cos \alpha )}{\sin \alpha ( \cos \alpha + \sin \alpha - 1)} \\ = > \frac{(1 + cos \alpha )(sin \alpha - 1 + cos \alpha )}{\sin \alpha ( \cos \alpha + \sin \alpha - 1)} \\ = > \frac{1 + cos \alpha }{ \sin\alpha } \\ = > \frac{1}{ \sin \alpha } + \frac{ \cos \alpha }{ \sin \alpha } \\ = cosec \alpha + \cot \alpha
I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions