Prove that :
CosA-sinA+1/cosA+sinA-1=secA+tanA
Answers
Answered by
34
Hey Buddy,☺☺
Here is your answer...✌✌
_____________
Question:
Prove that:
(CosA-sinA+1) / (cosA+sinA-1) = secA+tanA
Answer:
To prove
(CosA-sinA+1) / (cosA+sinA-1) = secA+tanA
Divide both numerator and denominator by cosA
【(CosA-sinA+1) / cosA】 / 【(cosA+sinA-1) / CosA】
seperate the denominator cosA for each term , let me show you the simplification of both the numerator and denominator seperately
numerator: (1+cosA - sinA)/ cosA= 1/cosA + cosA/cosA - sinA/cosA
= secA +1 - tanA .(as 1/cosA = secA, sinA/cosA= tanA)
= secA-tanA +1
similarly, denominator: (1+ cosA + sinA)/ cosA = 1/cosA +cosA/cosA + sinA/cosA = secA + 1 + tanA.
= secA+tanA + 1
After simplification now we have Nr. / Dr. = (secA-tanA +1) / (secA+tanA+1)..................................(1)
let 1 = sec^2A - tan^2A in the denominator of equation (1)
then equation (1) is (secA-tanA + 1) / ((secA +tanA)+ (sec^2A - tan^2A))
but sec^2A- tan^2A = (secA-tanA)(secA+tanA), from the formula "a^2-b^2 = (a+b)(a-b)"................................(I)
plug in the formula ,to get (secA-tanA+1) / ((secA+tanA)+ (secA + tanA)(secA- tanA)),
now take (secA+tanA) common from the denominator, we get
(secA- tanA +1) / (secA+tanA) ( 1+ secA - tanA)
= (secA-tanA+1) / (secA +tanA)( secA-tanA + 1)
we see that (secA-tanA +1) is the like term of both the Nr. and Dr., so cancel out that term.
we get, 1 / (secA + tanA),...................(2)
multiply and divide (2) by (secA - tanA)
(secA -tanA)/ (secA+tanA)(secA - tanA)
= (secA -tanA) / (sec^2A - Tan^2A) = (secA -tanA) / 1
= secA - tanA
(using formula (I) )
thus we get (1+cosa - sinA) / (1+cosa + sinA) = secA - tanA
___________________
Hope this will help you... ^_^
Keep Asking✔✔
Here is your answer...✌✌
_____________
Question:
Prove that:
(CosA-sinA+1) / (cosA+sinA-1) = secA+tanA
Answer:
To prove
(CosA-sinA+1) / (cosA+sinA-1) = secA+tanA
Divide both numerator and denominator by cosA
【(CosA-sinA+1) / cosA】 / 【(cosA+sinA-1) / CosA】
seperate the denominator cosA for each term , let me show you the simplification of both the numerator and denominator seperately
numerator: (1+cosA - sinA)/ cosA= 1/cosA + cosA/cosA - sinA/cosA
= secA +1 - tanA .(as 1/cosA = secA, sinA/cosA= tanA)
= secA-tanA +1
similarly, denominator: (1+ cosA + sinA)/ cosA = 1/cosA +cosA/cosA + sinA/cosA = secA + 1 + tanA.
= secA+tanA + 1
After simplification now we have Nr. / Dr. = (secA-tanA +1) / (secA+tanA+1)..................................(1)
let 1 = sec^2A - tan^2A in the denominator of equation (1)
then equation (1) is (secA-tanA + 1) / ((secA +tanA)+ (sec^2A - tan^2A))
but sec^2A- tan^2A = (secA-tanA)(secA+tanA), from the formula "a^2-b^2 = (a+b)(a-b)"................................(I)
plug in the formula ,to get (secA-tanA+1) / ((secA+tanA)+ (secA + tanA)(secA- tanA)),
now take (secA+tanA) common from the denominator, we get
(secA- tanA +1) / (secA+tanA) ( 1+ secA - tanA)
= (secA-tanA+1) / (secA +tanA)( secA-tanA + 1)
we see that (secA-tanA +1) is the like term of both the Nr. and Dr., so cancel out that term.
we get, 1 / (secA + tanA),...................(2)
multiply and divide (2) by (secA - tanA)
(secA -tanA)/ (secA+tanA)(secA - tanA)
= (secA -tanA) / (sec^2A - Tan^2A) = (secA -tanA) / 1
= secA - tanA
(using formula (I) )
thus we get (1+cosa - sinA) / (1+cosa + sinA) = secA - tanA
___________________
Hope this will help you... ^_^
Keep Asking✔✔
MsPRENCY:
✔well done
Answered by
4
Step-by-step explanation:
Answer is in the pic.
Hope it will help you !
Attachments:
Similar questions