Math, asked by pranav040, 1 year ago

prove that (cosec 0 - cot 0) 2=1-cos0 / 1+cos0​

Answers

Answered by sunder1973rajan05
2

Answer:

class 10

Step-by-step explanation:

its answer in class text book

Answered by gundasuresh450
7

RHS:

 \frac{1 -  \cos0}{1 +  \cos0 }  \\  \\ now \: multiply \: and \: divide \: with \: 1 -  \cos0 \\  \\  =  \frac{1 -  \cos0}{1 +  \cos0}  \times  \frac{1 -  \cos0 }{1 -  \cos0 }  \\  = \frac{(1 - cos0) {}^{2} }{(1  +  \cos0)(1 -  \cos0) } \\  =  \frac{(1 -  \cos0) {}^{2}  }{1 -  \cos {}^{2} 0}  \\  =  \frac{(1 -  \cos0) {}^{2} }{ \sin {}^{2}0  }  \\ ( \frac{1 -  \cos0 }{ \sin0} ) {}^{2}  \\  = ( \frac{1}{ \sin  } -  \frac{ \cos0 }{ \sin }  ) {}^{2}  \\  = ( \csc {}^{2}0 -  \cot {}^{2}  0) {}^{2}    \: hence \: proved

Similar questions