Math, asked by Anonymous, 10 months ago

Prove that
Cosec 2A - cot 2A = tan A ?​

Answers

Answered by Anonymous
17

Answer:

\huge\bf\underline\green{AnSweR:}

Cosec 2A - Cot 2A = tan A

  \csc2a \:  -  \cot2a =  \frac{1}{ \sin \: 2a}  -  \frac{ \cos \: 2a }{ \sin \: 2a}

 =  \frac{1 -  \cos \: 2a}{ \sin \: 2a }

 =  \frac{2 \:  { \sin}^{2}a }{2 \:  \sin \: a \: cos \: a }

 =  \frac{ \sin \: a}{ \cos \: a }

\implies\bf\red{tan\:A}

\bf\blue{Hence\:Proved}

Answered by Anonymous
1

Step-by-step explanation:

 \csc(2a)  -  \cot(2a)  =  \frac{1}{ \sin(2a) }  -  \frac{ \cos(2a) }{ \sin(2a) }

 =  \frac{1 -  \cos(2a) }{ \sin(2a)  }

 =  \frac{2 \sin ^{2} (a) }{(2 \sin(a)  \cos(a) ) }

 =  \frac{ \sin(a) }{ \cos(a)  }

 =  \tan(a)

Similar questions