Math, asked by ramitkoirala, 5 months ago

prove that: cosec 2A+ cot 4A= cot A - cosec 4A​

Answers

Answered by rabia7845
1

Answer:

The answer is simple

Step-by-step explanation:

Identities Used:

\begin{gathered}\sf{cosecA=\dfrac{1}{sinA}}\\\sf{sin2A=2sinAcosA}\\\sf{\dfrac{cosA}{sinA}=cotA}\\\sf{cos2A=2cos^2A-1}\end{gathered}

cosecA=

sinA

1

sin2A=2sinAcosA

sinA

cosA

=cotA

cos2A=2cos

2

A−1

Solution:

\sf{Taking\:L.H.S.}TakingL.H.S.

\sf{=cosec2A+cosec4A}=cosec2A+cosec4A

\sf{=\dfrac{1}{sin2A}+\dfrac{1}{sin4A}}=

sin2A

1

+

sin4A

1

\sf{=\dfrac{1}{sin2A}+\dfrac{1}{2sin2Acos2A}}=

sin2A

1

+

2sin2Acos2A

1

\sf{Taking\:L.C.M.}TakingL.C.M.

\sf{=\dfrac{2cos2A+1}{2sin2Acos2A}}=

2sin2Acos2A

2cos2A+1

\sf{=\dfrac{2cos2A+1+cos4A-cos4A}{sin4A}}=

sin4A

2cos2A+1+cos4A−cos4A

\sf{=\dfrac{2cos2A+1+cos4A}{sin4A}-\dfrac{cos4A}{sin4A}}=

sin4A

2cos2A+1+cos4A

sin4A

cos4A

\sf{=\dfrac{2cos2A+1+2cos^2A-1}{sin4A}-cot4A}=

sin4A

2cos2A+1+2cos

2

A−1

−cot4A

\sf{=\dfrac{2cos2A(1+cos2A)}{2sin2Acos2A}-cot4A}=

2sin2Acos2A

2cos2A(1+cos2A)

−cot4A

\sf{=\dfrac{1+2cos^2A-1}{sin2A}-cot4A}=

sin2A

1+2cos

2

A−1

−cot4A

\sf{=\dfrac{2cos^2A}{2sinAcosA}-cot4A}=

2sinAcosA

2cos

2

A

−cot4A

\sf{=\dfrac{cosA}{sinA}-cot4A}=

sinA

cosA

−cot4A

\sf{=cotA-cot4A}=cotA−cot4A

\bf{\sf{HENCE\:PROVED}}HENCEPROVED

Similar questions