Math, asked by khushiatreja, 9 months ago

prove that cosec^2theta +tan^2 (90-theta)=2sec^2(90-theta)-1​

Answers

Answered by riyaamen303
0

Solution:

cosec^{2}\theta+tan^{2}(90-\theta) = 2sec^{2}(90-\theta)-1

Now, let's take

L.H.S = cosec^{2}\theta+tan^{2}(90-\theta)

and

R.H.S = 2sec^{2}(90-\theta)-1

Therefore,

         L.H.S => \frac{1}{sin^{2}\theta} } + cot^{2}\theta

                 =>\frac{1}{sin^{2}\theta} } + \frac{cos^{2}\theta}{sin^{2}\theta}

                 =>\frac{1+cos^{2}\theta}{sin^{2}\theta} \\

                =>\frac{1+1-sin^{2}\theta}{sin^{2}\theta}

               =>\frac{2-sin^{2}\theta}{sin^{2}\theta}

     

       R.H.S  =>2 * (cosec^{2}\theta)-1

                   => 2*\frac{1}{sin^{2}\theta} -1

                  => \frac{2-sin^{2}\theta}{sin^{2}\theta}

Hence proved!!!

   

Please add brainliest!!

Similar questions