Prove that
Cosec^6 A =Cot^6A+3Cot^2ACosec^2A+1
Answers
Step-by-step explanation:
cosec^6 x - cot^6x
= (cosec^2 x)^3- (cot ^2 x)^3
= (cosec^2 x - cot^2 x)(cosec^4 x + cosec^2 x cot ^2 x + cot^4 x)
= (cosec^4 x + cosec^2 x cot ^2 x + cot^4 x) as (cosec^2 x - cot^2 x) = 1
= (cot^2 x +1 )^2 + (cot^2 x+1) cot^2 x + cot^ 4x
= cot ^4 x + 2 cot^2 x + 1 + cot^4 x + cot^2 x + cot^4 x
= 1+ 3 cot^2 x + cot^4 x
QUESTION:
Prove that Cosec⁶ θ = Cot⁶ θ + 3 Cot² θ Cosec² θ + 1.
GIVEN:
- Cosec⁶ θ = Cot⁶ θ + 3 Cot² θ Cosec² θ + 1.
TO PROVE:
- Cosec⁶ θ = Cot⁶ θ + 3 Cot² θ Cosec² θ + 1.
PROOF:
Take Cosec⁶ θ as L.H.S.
Take Cot⁶ θ + 3 Cot² θ Cosec² θ + 1 as R.H.S.
L.H.S:
Cosec⁶ θ = (Cosec² θ)³
Cosec⁶ θ = (1 + Cot² θ)³
Cosec⁶ θ = 1³ + (Cot² θ)³ + 3(1)(Cot² θ)(1 + Cot² θ)
Cosec⁶ θ = 1 + Cot⁶ θ + 3Cot² θ(1 + Cot² θ)
Cosec⁶ θ = 1 + Cot⁶ θ + 3Cot² θ(Cosec² θ)
Cosec⁶ θ = 1 + Cot⁶ θ + 3 Cot² θ Cosec² θ
Cosec⁶ θ = Cot⁶ θ + 3 Cot² θ Cosec² θ + 1
R.H.S:
Cot⁶ θ + 3 Cot² θ Cosec² θ + 1
L.H.S = R.H.S
Cosec⁶ θ = Cot⁶ θ + 3 Cot² θ Cosec² θ + 1
HENCE PROVED.
VERIFICATION:
Cosec⁶ θ = Cot⁶ θ + 3 Cot² θ Cosec² θ + 1
Substitute θ = 45°
Cosec⁶ 45° = Cot⁶ 45° + 3 Cot² 45° Cosec² 45° + 1
(√2)⁶ = 1 + 3(1)²(√2)² + 1
(√2)⁶ = (√2 ×√2 × √2 × √2 × √2 × √2)
(√2)⁶ = (2 × 2 × 2)
(√2)⁶ = 8
8 = 1 + 3(2) + 1
8 = 1 + 6 + 1
8 = 8