Math, asked by srikanthchiku1581, 10 months ago

Prove that : cosec 6 theta = cot 6 theta + 3 cot2 theta × sec 2 theta +1

Answers

Answered by mindfulmaisel
0

$ \text{cosec}^6 \theta = \text{cot}^6 \theta + 3\text{cot}^2\theta \times \text{cosec}^2 \theta + 1 is proved

Step-by-step explanation:

To Prove :

$ \text{cosec}^6 \theta = \text{cot}^6 \theta + 3\text{cot}^2\theta \times \text{cosec}^2 \theta + 1

We know that,

$ \text{cosec}^2 \theta = \text{cot}^2 \theta + 1 \ \ -------> (1)

Cubing on both sides in the equation we get,

$ \text{(cosec}^2 \theta)^3 = \text{(cot}^2 \theta)^3 + 1 \ \ ------> (2)

Also, we know that (a+b)³ = a³ + b³+ 3 ab (a+b)

$ (\text{cot}^2 \theta + 1)^3 \ = \text{(cot}^2 \theta)^3 + 1^3 + 3\text{(cot}^2 \theta)(\text{cot}^2 \theta + 1) \ \ ------> (3)

Substitute the above equation (3) in equation in (2)

$ (\text{cosec} \theta )^6 \ = \text{(cot}^2 \theta)^3 + 1^3 + 3\text{(cot}^2 \theta)(\text{cot}^2 \theta + 1)

From equation (1),

$ (\text{cosec} \theta )^6 \ = \text{(cot}^6 \theta)  + 3\text{(cot}^2 \theta)(\text{cosec}^2 \theta) + 1

Hence the given condition is proved.

To Learn More:

1. If tan theta + 1/tan theta = 2, find the value of tan square theta + 1/tan square theta

brainly.in/question/3881975

2. Cos 2 theta/(1-tan theta)+sin 3 theta/(sin theta - cos theta)=1+sin theta.cos theta

brainly.in/question/2763664

Similar questions