Prove that:
cosec^6A-cot^6A=3cot²Acosec²A+1
Answers
Answered by
4
Attachments:
Answered by
1
Answer:
LHS
= cosec^6 A - cot^6 A
= (cosec^2 A)^3 - (cot^2 A)^3
= (cosec^2 A - cot^2 A)(cosec^4 A + cot^4 A + cosec^2 A * cot^2 A)
= (cosec^4 A + cot^4 A + cosec^2 A * cot^2 A
Since, cosec^2 A - cot^2 A = 1
= (cot^2 A + 1)^2 + cot^4 A + (cot^2 A +1)cot^2 A
= cot^4 A + 2cot^2 A + 1 + cot^4 A + cot^4 A + cot^2 A
= 3cot^4 A + 3cot^2 A + 1
Now,
RHS = 3cot^2 Acosec^2 A + 1
= 3(cot^2 A) (cot^2 A + 1) + 1
= 3 cot^4 A + 3 cot ^2 A + 1
Clearly, LHS = RHS
Hence proved the identity that
cosec^6 A - cot^6 A = 3cot^2 A cosec^2 A + 1
Hope this helps you !
Similar questions