Math, asked by harthik84, 9 months ago

Prove that : cosec A (1+ cos A)(cosec A- cot A) = 1

Answers

Answered by Anonymous
35

\huge\sf\red{Question\::}

\sf Prove\: that\: :

\sf{cosecA (1+cosA)(cosecA-cotA)=1}

\huge\sf\purple{Solution\: :}

\sf L.H.S\: :\:cosecA (1+cosA)(cosecA-cotA)

\longrightarrow\:\:\:\sf{\dfrac{1}{sinA}(1+cosA)\Bigg(\dfrac{1}{sinA}-\dfrac{cosA}{sinA}\Bigg)}

\longrightarrow\:\:\:\sf{\dfrac{1}{sinA}(1+cosA)\Bigg(\dfrac{1-cosA}{sinA}\Bigg)}

\longrightarrow\:\:\:\sf{\dfrac{(1+cosA)(1-cosA)}{sin^2A}}

{\boxed{\sf{(a+b)(a-b)= a^2 - b^2}}}

\longrightarrow\:\:\:\sf{\dfrac{1-cos^2A}{sin^2A}}

{\boxed{\sf{sin^2 A = 1 - cos^2 A}}}

\longrightarrow\:\:\:\sf{\dfrac{sin^2A}{sin^2A}}

\longrightarrow\:\:\:\sf{1}

\sf\pink{ L.H.S\: =\: R.H.S\: (Hence\: Proved)}

Answered by Anonymous
2

Let, A = α

⟹ \csc\alpha (1 +  \cos \alpha ) ( \csc\alpha  -  \cot \alpha )

  • [cosec α = 1/sin α ]
  • [cot α = cos α/sin α ]

⟹ \frac{1}{ \sin \alpha  } (1 +  \cos \alpha ) ( \frac{1}{ \sin \alpha  }  -  \frac{ \cos \alpha  }{ \sin \alpha  } )

⟹( \frac{1 +  \cos \alpha  }{ \sin \alpha  } )( \frac{1 -  \cos \alpha  }{ \sin \alpha  } )

  • (a + b)(a - b) = a² - b²

⟹ \frac{ {(1 -  \cos }^{2} \alpha  )} {{ \sin }^{2} \alpha  }

  • 1 - cos² α = sin² α

⟹ \frac{ { \sin }^{2}  \alpha  }{ { \sin }^{2}  \alpha }

⟹1

Step-by-step explanation:

<marquee behaviour-move><font color="blue"><h2># PLEASE MARK ME AS BRAINLIEST✌✌✌</ ht></marquee>

Similar questions