prove that cosec A (1-cosA) (cosec A +cotA) =1
Answers
Answered by
4
Answer:-
We have to prove:
cosec A (1 - cos A) (cosec A + cot A) = 1
using cosec A = 1/sin A and cot A = cos A/sin A we get,
⟹ (1/sin A) (1 - cos A) (1/sin A + cos A/sin A) = 1
⟹ (1/sin A) (1 - cos A) (1 + cos A) / sin A = 1
using (a + b)(a - b) = a² - b² we get,
⟹ (1/sin² A) (1² - cos² A) = 1
⟹ (1/sin² A) (1 - cos² A) = 1
using the identity 1 - cos² A = sin² A we get,
⟹ (1/sin² A) * (sin² A) = 1
⟹ 1 = 1
Hence, Proved.
_________________________________
Another Method:-
We know, cosec A = 1/sin A.
So, first multiply cosec A & 1 - cos A.
⟹ (cosec A - cos A/sin A) (cosec A + cot A) = 1
- cos A/sin A = cot A.
⟹ (cosec A - cot A)(cosec A + cot A) = 1
⟹ cosec² A - cot² A = 1
⟹ 1 = 1 [∵ cosec² θ - cot² θ = 1 ].
Answered by
2
Step-by-step explanation:
LHS:-
Similar questions