Math, asked by clare21, 1 month ago

Prove that √(cosec A + 1) / cosec A - 1) = sec A + tan A

Answers

Answered by Anonymous
5

Answer:

{\large{\underline{\sf{Solution-}}}}

{ \longrightarrow{ \sf{ \sqrt{ \frac{CosecA+1}{CosecA - 1} }= SecA + TanA}}} \\

From LHS,

{ \longrightarrow{ \sf{ \sqrt{ \frac{CosecA + 1}{CosecA - 1} } }}} \\

By Rationalizing,

{ \longrightarrow{ \sf{ \sqrt{ \frac{CosecA+1}{CosecA -1} } ×\sqrt{ \frac{CosecA+1}{CosecA +1} }}}} \\

{ \longrightarrow{ \sf{ \sqrt{ \frac{ {(CosecA+1)}^{2} }{ {(CosecA) }^{2} - {(1)}^{2} } } }}} \\

{ \longrightarrow{ \sf{ \sqrt{ \frac{ {(CosecA+1)}^{2} }{ {Cosec}^{2}A - 1 } } }}} \\

{ \longrightarrow{ \sf{ \sqrt{ \frac{ {(CosecA+1)}^{2} }{ {Cot}^{2} A} } }}} \\

By Cancelling Squares and roots,

{ \longrightarrow{ \sf{ \frac{CosecA +1}{CotA} }}} \\

By Expanding Fraction,

{ \longrightarrow{ \sf{ \frac{CosecA}{CotA} + \frac{1}{CotA} }}} \:  \\

{ \longrightarrow{ \sf{ \frac{CosecA}{CotA} +TanA}}} \\

{ \longrightarrow{ \sf{ \frac{1}{SinA} × \frac{SinA}{CosA} +TanA}}} \\

{ \longrightarrow{ \sf{ \frac{1}{CosA} +TanA}}} \\

{ \longrightarrow{ \sf{SecA+ TanA}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { \therefore{ \large{ \underline{ \mathcal{ \pmb{\rm{Hence   \: Proved}}}}}}}

Used Identities & Formula:-

  • Cosec²θ - Cot²θ = 1

  • 1/Cotθ = Tanθ

  • 1/Sinθ = Cscθ

  • 1/cosθ = Secθ

  • a² - b² = (a + b) (a - b)

mark as Brainliest :)

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Consider, LHS

\rm :\longmapsto\: \sqrt{\dfrac{cosecA + 1}{cosecA - 1} }

We know,

\boxed{ \bf{ \: cosecx =  \frac{1}{sinx}}}

So, using this, we get

\rm \:  =  \:  \sqrt{\dfrac{\dfrac{1}{sinA}  + 1 }{\dfrac{1}{sinA}   -  1} }

\rm \:  =  \:  \sqrt{\dfrac{1 + sinA}{1  -  sinA} }

On rationalizing the denominator, we get

\rm \:  =  \:  \sqrt{\dfrac{1 + sinA}{1 + sinA}  \times \dfrac{1 + sinA}{1 + sinA} }

We know,

\boxed{ \bf{ \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}}}

\rm \:  =  \:  \sqrt{\dfrac{ {(1 + sinA)}^{2} }{ {1}^{2}  -  {sin}^{2}A } }

\rm \:  =  \:  \sqrt{\dfrac{ {(1 + sinA)}^{2} }{1 -   {sin}^{2}A } }

We know,

\boxed{ \bf{ \:  {sin}^{2}x +  {cos}^{2}x = 1}}

So, using this, we get

\rm \:  =  \: \dfrac{1 + sinA}{ \sqrt{ {cos}^{2} A} }

\rm \:  =  \: \dfrac{1 + sinA}{cosA}

\rm \:  =  \: \dfrac{1}{cosA}  +  \dfrac{sinA}{cosA}

\rm \:  =  \: secA  \:  + \: tanA

Hence,

\rm :\longmapsto\:\boxed{ \bf{ \:  \sqrt{\dfrac{cosecA + 1}{cosecA - 1} }  = secA + tanA}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions