Math, asked by nareshbaisoya1973, 1 year ago

prove that (cosec A - 3 sin A)(sec A - cos A ) =1/tan A + cot A​

Attachments:

Answers

Answered by Anonymous
12

Correct Question :-

Prove that (cosec A - sin A)(sec A - cos A ) =1/(tan A + cot A)

Solution :-

 \sf (cosecA - sinA)(secA - cosA) =  \dfrac{1}{tan A + cotA}

Consider LHS

 \sf   (cosecA - sinA)(secA - cosA)

 \sf   =   \bigg( \dfrac{1}{sinA}  - sinA \bigg) \bigg( \dfrac{1}{cosA}  - cosA \bigg)

Taking LCM

 \sf   =   \bigg( \dfrac{1 - sin ^{2} A   }{sinA} \bigg) \bigg( \dfrac{1 - cos^{2} A  }{cosA}  \bigg)

 \sf   =   \bigg( \dfrac{cos ^{2} A   }{sinA} \bigg) \bigg( \dfrac{sin^{2} A  }{cosA}  \bigg)

[ Because, sin²A + cos²A = 1 ]

 \sf   =  cosA.sinA

Consider RHS

 \sf \dfrac{1}{tan A + cotA}

 \displaystyle{ \sf =  \frac{1}{  \dfrac{sinA}{cosA} +  \dfrac{cosA}{sinA} }}

[ Because tanA = sinA/cosA and cotA = cosA/sinA ]

Taking LCM

\sf =  \dfrac{1}{  \frac{sin^{2} A+ cos^{2}A} {cosA.sinA}}

\sf =  \dfrac{1}{  \frac{1} {cosA.sinA}}

[ Because sin²A + cos²A = 1 ]

\sf =  1 \times cosA.sinA

\sf =   cosA.sinA

LHS = RHS

Hence proved.

Similar questions