Math, asked by Naina7978, 1 year ago

Prove that cosec A + cot A = 1/ cosec A - cot A .

Answers

Answered by Anonymous
46

1/(csca - cota) =

1/(1/sina - cosa/sina) =

1/((1 - cosa)/sina) =

sina/(1 - cosa) =

(1 + cosa)/(1 + cosa) sina/(1 - cosa) =

(sina + sinacosa)/(1 - cos^2a) =

(sina + sinacosa)/sin^2a =

1/sina + cosa/sina =

csca + cota


Naina7978: But can you prove it using LHS
Answered by JackelineCasarez
11

Hence proved through rationalization that

cosec A + cot A = 1/ cosec A - cot A.

Step-by-step explanation:

⇒ R.H.S. = \frac{1}{cosec A - CotA} ×\frac{cosec A + Cot A}{Cosec A + Cot A}       (through rationalization)

= \frac{cosec A + CotA}{cosec^{2}A - Cot^{2}A}

= Cosec A + Cot A    (L.H.S.)

Learn more: Trigonometry

brainly.in/question/28141866

Similar questions