Math, asked by odazai905, 7 months ago

prove that -
(cosec A - sin A) (sec A - cos A) = 1/(tan A + cot A). ​

Answers

Answered by lakshyashaurya
1

Answer:

LHS=(cosecA−sinA)(secA−cosA)=(  

sinA

1

​  

−sinA)(  

cosA

1

​  

−cosA)

                                      =(  

sinA

1−sin  

2

A

​  

)(  

cosA

1−cos  

2

A

​  

)=sinAcosA=  

2

1

​  

sin2A

RHS=  

tanA+cotA

1

​  

=  

1+tan  

2

A

tanA

​  

=  

2

1

​  

sin2A

LHS=RHS

Hence Proved

Step-by-step explanation:

Answered by mdyousuf123friend
2

Step-by-step explanation:

(cosec A- sin A)(sec A-cos A)

L.H.S= (1/sin A-sin A)(1/cos A-cosA)

=(1-sin²A/sin A)(1-cos²A/cosA)

=(cos ²A/sinA)(sin²A/cos A)

=cosA.sinA

R.H.S= 1/tanA +cot A

=(1/sinA/cos A+cos A/sin A)

=(1/sin²A+cos²A/cosA.sinA)

=1/1/cosA.sinA

=1×cosA.sinA/1

=cosA.sinA

L.H.S=R.H.S proved

Similar questions