Math, asked by komaankabanesak, 1 year ago

Prove that, ( cosec A - sin A ) ( sec A - cos A ) = 1 / tan A + cot A

Answers

Answered by qais
31
( cosec A - sin A ) ( sec A - cos A ) 
= (1/sinA - sinA) (1/cosA - cosA)
=[(1-sin
²A)/sinA][ (1-cos²A)/cosA]
=(cos²A.sin²A)/(sinA.cosA)
=(cosA.sinA)/1
=(cosA.sinA)/(sin²A + cos²A)
 
dividing num. and deno by cosA.sinA

=1/[(sinA/cosA) + (cosA/sinA)]
=1/(tanA+ cotA)
proved 

Answered by dinesh21302
1

Answer:

I Think This Answer was helps you

Attachments:
Similar questions