Prove that, ( cosec A - sin A ) ( sec A - cos A ) = 1 / tan A + cot A
Answers
Answered by
31
( cosec A - sin A ) ( sec A - cos A )
= (1/sinA - sinA) (1/cosA - cosA)
=[(1-sin²A)/sinA][ (1-cos²A)/cosA]
=(cos²A.sin²A)/(sinA.cosA)
=(cosA.sinA)/1
=(cosA.sinA)/(sin²A + cos²A)
dividing num. and deno by cosA.sinA
=1/[(sinA/cosA) + (cosA/sinA)]
=1/(tanA+ cotA)
proved
= (1/sinA - sinA) (1/cosA - cosA)
=[(1-sin²A)/sinA][ (1-cos²A)/cosA]
=(cos²A.sin²A)/(sinA.cosA)
=(cosA.sinA)/1
=(cosA.sinA)/(sin²A + cos²A)
dividing num. and deno by cosA.sinA
=1/[(sinA/cosA) + (cosA/sinA)]
=1/(tanA+ cotA)
proved
Answered by
1
Answer:
I Think This Answer was helps you
Attachments:
Similar questions