Math, asked by ahishkumawat0513, 1 month ago


Prove that (cosec A -sin A) (sec A-cos A)
= 1/
tan A + cott A




Answers

Answered by sandy1816
0

(coseca - sina)(seca - cosa) \\  = ( \frac{1 -  {sin}^{2} a}{sina} )( \frac{1 -  {cos}^{2} a}{cosa} ) \\  =  \frac{ {cos}^{2}a {sin}^{2} a }{sinacosa}  \\  = sinacosa \\  =  \frac{sinacosa}{ {sin}^{2} a +  {cos}^{2}a }  \\  =  \frac{1}{ \frac{ {sin}^{2} a +  {cos}^{2}a }{sinacosa} }  \\  =  \frac{1}{ \frac{sina}{cosa} +  \frac{cosa}{sina}  }  \\  =  \frac{1}{tana + cota}

Similar questions