Prove that (cosec A - sin A) (sec A - cos A ) = 1/tanA + cot A
A boat goes 24 km upstream and 28 km down stream in 6 hrs . It goes 30 km upstream and 21 km downstream in 6 h 30m. Find the speed of boat in still water.
Answers
Answered by
0
1)
[tex](\csc{A}-\sin{A})(\sec{A}-\cos{A})=(\frac1{\sin{A}}-\sin{A})(\frac1{\cos{A}}-\cos{A}})=\\\frac{1-\sin^2{A}}{\sin{A}}\cdot\frac{1-\cos^2{A}}{\cos{A}}=\frac{\cos^2{A}\sin^2{A}}{\sin{A}\cos{A}}=\sin{A}\cos{A}\\\\\frac1{\tan{A}}+\cot{A}=\cot{A}+\cot{A}=2\cot{A}=\frac{2\cos{A}}{\sin{A}}\ne\sin{A}\cos{A}\\\\\textrm{because when:}\\\\\frac{2\cos{A}}{\sin{A}}=\sin{A}\cos{A}\\\\\textrm{For}\ \sin{A}\ne0\textrm{ and}\ \cos{A}\ne0:\\2\cos{A}=\sin^2{A}\cos{A}\\\sin^2{A}=2\\\sin{A}=\pm\sqrt2\approx\pm1.4\\\textrm{but:}[/tex]
[tex]\\\forall{A\in{R}:}\ \ -1\le\sin{A}\le1\\\textrm{The equation is false, so:}\\(\csc{A}-\sin{A})(\sec{A}-\cos{A})\ne\frac1{\tan{A}}+\cot{A}[/tex]
2)
Answer:
Speed of boat in still water is 10 km/h.
[tex](\csc{A}-\sin{A})(\sec{A}-\cos{A})=(\frac1{\sin{A}}-\sin{A})(\frac1{\cos{A}}-\cos{A}})=\\\frac{1-\sin^2{A}}{\sin{A}}\cdot\frac{1-\cos^2{A}}{\cos{A}}=\frac{\cos^2{A}\sin^2{A}}{\sin{A}\cos{A}}=\sin{A}\cos{A}\\\\\frac1{\tan{A}}+\cot{A}=\cot{A}+\cot{A}=2\cot{A}=\frac{2\cos{A}}{\sin{A}}\ne\sin{A}\cos{A}\\\\\textrm{because when:}\\\\\frac{2\cos{A}}{\sin{A}}=\sin{A}\cos{A}\\\\\textrm{For}\ \sin{A}\ne0\textrm{ and}\ \cos{A}\ne0:\\2\cos{A}=\sin^2{A}\cos{A}\\\sin^2{A}=2\\\sin{A}=\pm\sqrt2\approx\pm1.4\\\textrm{but:}[/tex]
[tex]\\\forall{A\in{R}:}\ \ -1\le\sin{A}\le1\\\textrm{The equation is false, so:}\\(\csc{A}-\sin{A})(\sec{A}-\cos{A})\ne\frac1{\tan{A}}+\cot{A}[/tex]
2)
Answer:
Speed of boat in still water is 10 km/h.
Similar questions