Math, asked by madhavsharma0006, 4 months ago

Prove that `(cosec A-sin A)(sec A-cos A)(tan A+cot A)=1​

Answers

Answered by hotcupid16
1

\frak{Given} \begin{cases} & \sf{Base\:Diameter\:of\: Cylindrical\:container = \bf{14\:cm}}  \\ & \sf{Base\:radius\:of\: Cylindrical\:container = \bf{7\:cm}} \\ & \sf{Height\:of\: cylindrical\:container = \bf{20\:cm}} \end{cases}\\ \\

To find: Volume of milk powder in container?

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\

Volume of Milk powder = Volume of container

⠀⠀⠀

★ Now, Finding Volume of cylindrical container,

⠀⠀⠀

\dag\;{\underline{\frak{Volume\:of\:cylinder\:is\:given\:by}}}\\ \\

\star\;{\boxed{\sf{\pink{Volume_{\;(cylinder)} = \pi r^2 h}}}}\\ \\

where,

r & h are radius and height of cylinder respectively.

⠀⠀⠀⠀

:\implies\sf Volume_{\;(container)} = \dfrac{22}{7} \times 7 \times 7 \times 20\\ \\

:\implies\sf Volume_{\;(container)} = \dfrac{22}{ \cancel{7}} \times \cancel{7} \times 7 \times 20\\ \\

:\implies\sf Volume_{\;(container)} = 22 \times 7 \times 20\\ \\

:\implies\sf Volume_{\;(container)} = 154 \times 20\\ \\

:\implies{\underline{\boxed{\frak{\purple{Volume_{\;(container)} = 3080\:cm^3}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Volume\:of\:milk\:powder\:in\:container\:is\: \bf{3080\:cm^3}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

\qquad\boxed{\underline{\underline{\pink{\bigstar \: \bf\:Formula\:Related\:to\:cylinder\:\bigstar}}}}\\ \\

\sf Area\:of\:base\:of\:cylinder = \bf{\pi r^2}

\sf Total\:Surface\:area\:of\:cylinder = \bf{2 \pi r(r + h)}

\sf Curved\:Surface\:area\:of\:cylinder = \bf{2 \pi rh}

\sf Volume\:of\:cone = \bf{ \dfrac{1}{3} \times Volume_{\:(cylinder)}}

Similar questions