Prove that ( cosec A - sin A) ( sec A - cot A) sec^2A = tan A
Answers
Answered by
0
Step-by-step explanation:
L.H.S. = (cosec A – sin A)(sec A – cos A). sec2 A
= (1/sin A – sin A). (1/cos A – cos A). 1/cos2 A
= (1 – sin2 A/sin A) × (1 – cos2 A/cos A) × 1/cos2 a
= cos2 A/sin A × sin2 A/cos A × 1/cos2 A
[∵ (1 – sin2 A) = cos2 A]
[∵ 1 – cos2 A = sin2 A]
= sin A/cos A = tan A
= R.H.S.
Hence proved.
Answered by
0
Correct Question :-
Prove that ( cosec A - sin A) ( sec A - cos A) sec^2A = tan A ?
Solution :-
→ ( cosec A - sin A) ( sec A - cos A) sec^2A = tan A
putting :-
- cosecA = (1/sinA)
- secA = (1/cosA)
- sec²A = (1/cos²A)
→ (1/sinA - sinA) * (1/cosA - cosA) * (1/cos²A) = tanA
→ {(1 - sin²A) /sinA} * {(1 - cos²A) /cosA} * (1/cos²A) = tanA
Putting :-
- (1 - sin²A) = cos²A
- (1 - cos²A) = sin²A
→ (cos²A/sinA) * (sin²A/cosA) * (1/cos²A) = tanA
→ (cos²A * sin²A) / (sinA * cos³A) = tanA
→ (sinA/cosA) = tanA
putting :-
- (sinA/cosA) = tanA
→ tanA = tanA (Proved).
Similar questions