prove that cosec A tan A= secA
Answers
tan A + cot A=sec A cosec A
tan A + cot A=sec A cosec ALHS=tan A +cot A
tan A + cot A=sec A cosec ALHS=tan A +cot A =sin A/cos A+ cos A/sin A
tan A + cot A=sec A cosec ALHS=tan A +cot A =sin A/cos A+ cos A/sin A =(sin^2 A+cos^2 A)/cos A sin A
tan A + cot A=sec A cosec ALHS=tan A +cot A =sin A/cos A+ cos A/sin A =(sin^2 A+cos^2 A)/cos A sin A =1/cos A sin A
tan A + cot A=sec A cosec ALHS=tan A +cot A =sin A/cos A+ cos A/sin A =(sin^2 A+cos^2 A)/cos A sin A =1/cos A sin A =sec A cosec A
tan A + cot A=sec A cosec ALHS=tan A +cot A =sin A/cos A+ cos A/sin A =(sin^2 A+cos^2 A)/cos A sin A =1/cos A sin A =sec A cosec A =RHS
Step-by-step explanation:
cosecA = 1/sinA
tanA = sinA/cosA
solving LHS and putting the above values,
1/sinA * sinA/cosA
= 1/cosA
as we know 1/cosA is equals to secA= RHS
hence proved