Math, asked by AdityaA2007, 1 month ago

Prove that (cosecθ - cotθ)² = (1 - cosθ)/(1 + cosθ)

Answers

Answered by Jiyaa021
2

Answer:

LHS= (cosecθ - cotθ)²

= (\frac{1}{sin\alpha } - \frac{cos\alpha }{sin\alpha } )^{2} = (\frac{1-cos\alpha }{sin\alpha } )^{2} \\\\= (\frac{(1-cos\alpha )^{2} }{sin^{2} \alpha } = \frac{(1-cos\alpha)^{2}  }{1-cos^{2}\alpha  } \\= \frac{(1-cos\alpha )^{2} }{(1-cos\alpha)(1+cos\alpha  } = \frac{1-cos\alpha }{1+cos\alpha } = RHS.\\

Hope its helps you

Thanks !!

Answered by basakpriyodipto
0

Step-by-step explanation:

Similar questions