prove that (cosecθ – cotθ )square=1-cos/1+cos
Answers
Answered by
1
Answer:
ANSWER
We have,
(cosecθ−cotθ)
2
=(
sinθ
1
−
sinθ
cos θ
)
2
=(
sinθ
1−cosθ
)
2
=
sin
2
θ
(1−cosθ)
2
=
1−cos
2
θ
(1−cosθ)
2
[∵sin
2
θ=1−cos
2
θ]
=
(1−cosθ)(1+cosθ)
(1−cosθ)
2
=
1+cosθ
1−cosθ
Similar questions