Math, asked by boddupallykoushik, 11 months ago

Prove
that. (Cosec O - cotO)² =
1-cosO/1+cosO. - prove that cosec theta minus cot theta whole square is equal to 1 minus cos theta by 1 + cos theta ​

Answers

Answered by sandy1816
9

Answer:

</p><p>{\green{\underline{\underline{\huge{\mathfrak\red{your\:answer\:attached\:in\:the\:photo}}}}}}

Attachments:
Answered by umiko28
11

 \huge\mathbb{QUESTION \to: }

 \small\mathbb{TO \:  PROVE \mapsto:   {(cosec \theta \:  - cot \theta)}^{2}  = \frac{1 - cos \theta}{1 + cos \theta} }

 \huge\mathbb{SOLUTION \leadsto: }

   \bf\ using \:  formula \:  \\   \sf\ {sin}^{2} \theta +  {cos}^{2} \theta = 1   \\  \sf\ \implies \boxed{ {sin}^{2}  \theta }=  1 - {cos}^{2} \theta \\  \\  \\  \bf\  {(cosec \theta - cot \theta)}^{2}  \\  \\  \bf\  \mapsto:  {( \frac{1}{sin \theta} -  \frac{cos \theta}{sin \theta}  )}^{2}  \\  \\\bf\  \mapsto:  {( \frac{1 - cos \theta}{sin \theta} )}^{2}   \\  \\\bf\  \mapsto:  \frac{ {(1 - cos \theta)}^{2} }{ {sin}^{2}  \theta}   \\  \\ \bf\  \mapsto:  \frac{ {(1 - cos \theta)}^{2} }{1 -  {cos}^{2}  \theta}  \\  \\  \bf\  \mapsto: \frac{(1 - cos \theta)(1 - cos \theta)}{ {1}^{2}  -  {cos}^{2}  \theta} \\  \\ \bf\  \mapsto: \frac {(1 - cos \theta) \cancel{(1 - cos \theta)}}{(1 + cos \theta) \cancel{(1 - cos \theta)}}   \\  \\  \bf\boxed{  \mapsto: \frac{(1 - cos \theta)}{(1 + cos \theta)} }

Similar questions