Math, asked by mrunal007, 1 year ago

Prove that : (cosec p -sin p) (sec p-cos p) (tan p+ cot p ) = 1

Answers

Answered by parmesanchilliwack
13

Answer:

We have to prove, (cosec p -sin p) (sec p-cos p) (tan p+ cot p ) = 1

L.H.S.

(cosec p -sin p) (sec p-cos p) (tan p+ cot p )

= (\frac{1}{sinp} - sinp)(\frac{1}{cosp}-cosp)(\frac{sinp}{cosp}+\frac{cosp}{sinp})

= (\frac{1-sin^2p}{sinp})(\frac{1-cos^2p}{cosp})(\frac{sin^2p+cos^2p}{sinpcosp})

= (\frac{cos^2p}{sinp})(\frac{sin^2p}{cosp})(\frac{1}{sinpcosp})

= \frac{cos^2p\times sin^2p}{sinp\times cosp\times sinp\times cos p}

= \frac{cos^2p\times sin^2p}{cos^2p\times sin^2p}

= 1

= R.H.S.

Hence, proved.


navpreetdhillon312: thanks
Similar questions