prove that (cosec ∅ - sin∅) ( sec∅ - cos ∅)= 1/tan ∅+ cot∅
Answers
Answered by
32
Hola there,
Let ∅ be 'A'
Given => (cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)
LHS
=> (cosecA - sinA)(secA - cosA)
=> (1/sinA - sinA)(1/cosA - cosA)
=> [(1 - sin²A)/sinA][(1 - cos²A)/cosA]
=> (cos²A/sinA)(sin²A/cosA)
=> sinAcosA/1
=>(sinAcosA)/(sin²A + cos²A)
=> 1/[(sin²A/sinAcosA) + (cos²A/sinAcosA)]
=> 1/(tanA + cotA)
=> RHS
LHS = RHS
Hence Proved
Hope this helps....:)
Let ∅ be 'A'
Given => (cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)
LHS
=> (cosecA - sinA)(secA - cosA)
=> (1/sinA - sinA)(1/cosA - cosA)
=> [(1 - sin²A)/sinA][(1 - cos²A)/cosA]
=> (cos²A/sinA)(sin²A/cosA)
=> sinAcosA/1
=>(sinAcosA)/(sin²A + cos²A)
=> 1/[(sin²A/sinAcosA) + (cos²A/sinAcosA)]
=> 1/(tanA + cotA)
=> RHS
LHS = RHS
Hence Proved
Hope this helps....:)
Nina1483:
was that cot a or cos a
Answered by
28
hello friend
The answer in attachment helps you.
if you like my answer mark me as brainliest
plzzzz
The answer in attachment helps you.
if you like my answer mark me as brainliest
plzzzz
Attachments:
Similar questions