Math, asked by Dsssa, 1 year ago

Prove that ( cosec θ - sin θ )(sec θ-cosθ)(tan θ - cot θ) = 1

Answers

Answered by alwaysready
2

Step-by-step explanation:

  (cosec θ - sin θ) (sec θ-cosθ) (tan θ - cot θ) = 1

L.H.S =>  (cosec θ - sin θ) (sec θ-cosθ) (tan θ - cot θ)

          =  (1-sin²θ)/sin θ  × (1-cos²)/cos θ × (tan²θ-1)/tan θ

          = sin θ cos θ × (tan²θ-1)/tan θ

          = sin θ cos θ × [(sin²θ-cos²θ)/cos θ]/[sin θ cos θ]

          = sin θ cos θ × 1/cos²θ × cos θ/sin θ

          = 1

R.H.S =>  1

∴ L.H.S = R.H.S (Proved)

Hope, it will help you......

Similar questions