Prove that (cosec θ - sinθ) (secθ - cosθ) ( tanθ + cotθ )=1
Answers
Answered by
1
Answer:
Step-by-step explanation:
easy
I won't give you the proper solution but
convert tan, cot, sec and cosec in terms of sin and cos
cosec = 1/ sin
sec = 1/cos
tan= sin/cos
cot= cos/sin
And remember to use the identity
1-sin^2 = cos^2
LHS =(1/sin θ - sin θ)(1/cos θ - cos θ)(tan θ+1/tan θ)
=(1-sin²θ)/sinθ (1-cos²θ)/cosθ(1+tan²θ)/tanθ
=(cos²θ)/sinθ (sin²θ)/cosθ sec²θ/tanθ
=cos θ sin θ (1/cos²θ)/(sinθ/cosθ)
=cos θ sin θ(1/cos²θ)(cosθ/sinθ)
=cos θ sin θ (cos θ/sin θ cos²θ)
=cos θ sin θ (1/sin θ cos θ)
=cos θ sin θ/sin θ cos θ
=1=RHS
∴ Hence proved
Hope it Helps!!
pls mark as brainliest
Attachments:
Similar questions