Math, asked by Himans2360, 11 months ago

Prove that ✓(cosec theta +1\cosec theta -1)-✓(cosec theta-1\cosec theta+1)=2cot theta

Answers

Answered by Anonymous
6

Correct Question:

Prove that √(cosec theta +1\cosec theta -1)-√(cosec theta-1\cosec theta+1)=2 tan theta

\rule{200}{2}

To Proof:

{ \tt{ \sqrt{ \frac{cosec \theta + 1}{cosec \theta - 1} }  -  \sqrt{ \frac{cosec \theta - 1}{cosec \theta + 1} }  =  2tan \theta} } \\

\rule{200}2

Proof:

Taking LHS and rationalising the denominator;

  \longrightarrow{ \tt{\sqrt{ \frac{cosec \theta + 1}{cosec \theta - 1}  \times  \frac{cosec \theta + 1}{cosec \theta + 1} }  -  \sqrt{ \frac{cosec \theta - 1}{cosec \theta   + 1}  \times  \frac{cosec \theta - 1}{cosec \theta - 1}}}} \\  \\  \\  \longrightarrow \:  { \tt{\sqrt{ \frac{(cosec \theta + 1) {}^{2} }{cosec {}^{2}  \theta - 1 {}^{2} } }  -  \sqrt{ \frac{(cosec \theta - 1) {}^{2} }{cosec {}^{2}  \theta - 1 {}^{2} } } }} \\  \\  \\  \longrightarrow { \tt{ \frac{cosec \theta + 1}{cot \theta }  -  \frac{cosec \theta - 1}{cot  \theta } }} \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:{ \sf{(1 + cot  {}^{2}  \theta = cosec {}^{2}  \theta)}} \\  \\  \\  \longrightarrow { \tt{\frac{ \cancel{cosec \theta} + 1 -{ \cancel{ cosec \theta}} + 1}{cot \theta}}}  \\  \\  \\  { \tt{\longrightarrow \:  \frac{2}{cot \theta}  \leadsto \: 2tan \theta}}

\rule{200}2

Similar questions