Math, asked by vaishnavigupta0, 3 months ago

prove that:

cosec theta(1+costheta) (cosectheta-cottheta)=1
plz solve this itz urgent​

Attachments:

Answers

Answered by hbhatnagar917
1

Answer:

pls mark me as brainliest

Attachments:
Answered by sonalip1219
0

Given:-

f(\theta)=cosec\theta\times(1+cos\theta)\times(cosec\theta-cot\theta)

To Prove:-

f(\theta)=1

Proof:-

Convert all the terms in sin\theta and cos\theta

f(\theta)=\frac{1}{sin\theta}\left(1+cos\theta\right)\left(\frac{1}{sin\theta}-\frac{cos\theta}{sin\theta}\right)\\\\f(\theta)=\left(\frac{1}{sin\theta}+\frac{cos\theta}{sin\theta}\right)\left(\frac{1}{sin\theta}-\frac{cos\theta}{sin\theta}\right)\\\\f(\theta)=\left(\frac{1+cos\theta}{sin\theta}\right)\left(\frac{1-cos\theta}{sin\theta}\right)\\\\f(\theta)=\frac{1-cos^{2}\theta}{sin^{2}\theta}

Use the identity sin^{2}\theta+cos^{2}\theta=1 to solve it.

f(\theta)=\frac{sin^{2}\theta}{sin^{2}\theta}=1

Hence proved.

Similar questions