Math, asked by lakshitamiglani, 1 year ago

prove that (cosec theta -cot theta )^2 =1-cos theta / 1+cos theta​

Answers

Answered by Thinkab13
2

Answer:

hope this answer of mine helps you

Attachments:
Answered by mysticd
2

Answer:

 \left(cosec\theta-cot\theta\right)^{2}=\left(\frac{1-cos\theta}{1+cos\theta}\right)

Step-by-step explanation:

LHS= \left(cosec\theta-cot\theta\right)^{2}

=\left(\frac{1}{sin\theta}-\frac{cos\theta}{sin\theta}\right)^{2}

=\left(\frac{1-cos\theta}{sin\theta}\right)^{2}\\

=\frac{(1-cos\theta)^{2}}{sin^{2}\theta}

=\frac{(1-cos\theta)^{2}}{1-cos^{2}\theta}\\=\frac{(1-cos\theta)^{2}}{(1-cos\theta)(1+cos\theta)}\\=\left(\frac{1-cos\theta}{1+cos\theta}\right)\\=RHS

Therefore,

 \left(cosec\theta-cot\theta\right)^{2}=\left(\frac{1-cos\theta}{1+cos\theta}\right)

•••♪

Similar questions