Math, asked by Samirsaini7665, 1 year ago

Prove that cosec theta minus cot theta whole square equals to 1 minus cos theta upon 1 + cos theta

Answers

Answered by adarshhoax
6

Answer:

see the above attachment.

Attachments:
Answered by Nereida
57

ANSWER :-

Question :-

{(\cosec\theta - \cot\theta)}^{2} = \dfrac {1 - \cos\theta}{1+ \cos\theta}

Let's prove it...!

LHS :-

\leadsto {{(\cosec\theta - \cot\theta)}^{2}}

\leadsto {{[\dfrac{1}{\sin\theta } - \dfrac {\cos\theta}{\sin\theta}]}^{2}}

\leadsto {[{\dfrac{1 - \cos\theta }{\sin\theta}]}^{2}}

\leadsto {\dfrac {{(1 - \cos\theta)}^{2}}{1 - {\cos}^{2}\theta}}

(Using identity :- {\sin}^{2}\theta = 1 - {\cos}^{2}\theta )

\leadsto {\dfrac {(1 - \cos\theta)\cancel {(1 - \cos\theta)}}{(1 + \cos\theta)\cancel {(1 - \cos\theta)}}}

\leadsto {\dfrac {1 - \cos\theta}{1 + \cos\theta}}

Hence, proved

Similar questions