Math, asked by frahsyhf, 11 months ago

prove that (cosec theta - sin theta = cot theta cos theta )

Answers

Answered by thekings
11

Step-by-step explanation:

 \csc( \alpha )  -  \sin( \alpha )  \\  \\  \\  =  \frac{1}{ \sin( \alpha ) }  -  \sin( \alpha )  \\  \\  \\  =  \frac{1 -  { \sin}^{2} \alpha  }{ \sin( \alpha ) }  \\  \\  \\  =   \frac{ { \cos }^{2} \alpha  }{ \sin( \alpha ) }  \\  \\  \\  =  \frac{ \cos( \alpha ) }{ \sin( \alpha ) }  \cos( \alpha )  \\  \\  \\  =  \cot( \alpha )  \cos(?)

THANKS

Answered by iamanupama14
2

Answer:

Step-by-step explanation:

1)convert cosec theta to   1/sin theta..

2) perform LCM... you get,

1-sin square theta/ sin theta..

3)now we know that 1 - sin square theta is cos theta ...

you get ,

cos square theta / sin theta on LHS side.

simpify RHS . you get cos square theta.

Similar questions