Math, asked by poojarymanvithxc, 6 months ago

Prove that cosec theta - sin theta = cot theta × cosec theta.
Don't spam (or be reported).​

Answers

Answered by Anonymous
5

Step-by-step explanation:</p><p></p><p>\begin{gathered} \csc( \alpha ) - \sin( \alpha ) \\ \\ \\ = \frac{1}{ \sin( \alpha ) } - \sin( \alpha ) \\ \\ \\ = \frac{1 - { \sin}^{2} \alpha }{ \sin( \alpha ) } \\ \\ \\ = \frac{ { \cos }^{2} \alpha }{ \sin( \alpha ) } \\ \\ \\ = \frac{ \cos( \alpha ) }{ \sin( \alpha ) } \cos( \alpha ) \\ \\ \\ = \cot( \alpha ) \cos(?) \end{gathered}csc(α)−sin(α)=sin(α)1−sin(α)=sin(α)1−sin2α=sin(α)cos2α=sin(α)cos(α)cos(α)=cot(α)cos(?)</p><p></p><p>THANKS</p><p></p><p>

Similar questions