Prove that (cosec theta - sin theta)(sec theta - cos theta)=1/tan theta + cot theta
Answers
Answered by
200
Let theta be represented by A.
LHS = (1/sinA - sinA) (1/cos A - cos A)
= (1 - sin² A) /sinA * (1 - cos² A) / cos A
= cos A sin A after simplification
= cos² A * tan A
= Tan A / sec² A
= Tan A / (1 + tan² A)
= 1 / [ 1/tan A + tan A)
= 1 / [ cot A + tan A]
LHS = (1/sinA - sinA) (1/cos A - cos A)
= (1 - sin² A) /sinA * (1 - cos² A) / cos A
= cos A sin A after simplification
= cos² A * tan A
= Tan A / sec² A
= Tan A / (1 + tan² A)
= 1 / [ 1/tan A + tan A)
= 1 / [ cot A + tan A]
kvnmurty:
thanks for selecting best ans.
Answered by
14
Answer:
Guys plz mark as excellent so the slontion is:
Step-by-step explanation:
1st let us consider theta be A
LHS= (1/sinA-sinA) (1/cosA-cosA)
= (1-sin2A/sinA) (1-cos2A/cosA)
= (cos2A/sinA) (sin2A/cosA)
= sinA.cosA
RHS= 1/tanA+cotA
= 1/sinA/cosA+cosA/sinA
= 1/sin2A+cos2A/sinA.cosA
= sinA.cosA/sin2A+cos2A
Reason:{sin2A+cos2A= 1}
= sinA.cosA
Hence LHS=RHS= sinA.cosA
Thanks for watching.
Lokesh4822L is my I.D of garena you can join with me.
Similar questions