Math, asked by suklakanta71, 9 months ago

Prove that:
(cosec theta-sin theta)(sec theta-cos theta)(tan theta+cot theta)=1​

Answers

Answered by armirji
1

Answer:

HAVE IT.

Step-by-step explanation: FIRST OF ALL CONVERT AL  THE RATIOS INTO SIN AND COS.

THEN U WILL HAVE TO USE THE COMMON IDENTITY [SINSINSQUARE THETA+COS SQUARE THETA=1\\.

THEN YOU WILL SEE THAT EVERY TERM WILL GET CANCELLED.

AND AT LAST YOU WILL BE LEFT WITH UNITY!!!

Answered by pulakmath007
28

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

1.

1 - {cos}^{2}  \theta \:  = {sin}^{2}  \theta \:

2.

1 - {sin}^{2}  \theta \:  = {cos}^{2}  \theta \:

3.

1  +  {tan}^{2}  \theta \:  = {sec}^{2}  \theta \:

CALCULATION

(cosec  \theta-sin \theta)(sec \theta-cos  \theta)(tan  \theta+cot  \theta)

 \displaystyle \:  = (   \frac{1}{sin \theta}-sin \theta)(\frac{1}{cos \theta}-cos  \theta)(tan  \theta+\frac{1}{tan \theta})

 \displaystyle \:  = (   \frac{1-{sin}^{2}  \theta}{sin \theta})(   \frac{1-{cos}^{2}  \theta}{cos \theta})(   \frac{1 + {tan}^{2}  \theta}{tan \theta})

 \displaystyle \:  = (   \frac{{cos}^{2}  \theta}{sin \theta})(   \frac{{sin}^{2}  \theta}{cos \theta})(   \frac{ {sec}^{2}  \theta}{tan \theta})

 \displaystyle \:  = (   \frac{{cos}^{2}  \theta}{sin \theta})(   \frac{{sin}^{2}  \theta}{cos \theta}) \times  \frac{1}{{cos}^{2}  \theta} \times  \frac{cos \theta}{sin \theta}

 = 1

Similar questions