Math, asked by nishantietech6613, 11 hours ago

Prove that (cosec theta-sintheta)(sec theta-cos theta)=(1)÷(tan theta +cot theta)

Answers

Answered by NITESH761
0

Step-by-step explanation:

We have,

LHS

\rm (\cosec θ - \sin θ)(\sec θ-\cos θ)

\rm  \bigg(\dfrac{1}{\sin θ}- \sin θ \bigg) \bigg(\dfrac{1}{\cos θ}-\cos θ \bigg)

\rm  \bigg(\dfrac{1- \sin ^2 θ}{\sin θ} \bigg) \bigg(\dfrac{1-\cos ^2 θ}{\cos θ} \bigg)

\rm  \bigg(\dfrac{\cos ^2 θ}{\sin θ} \bigg) \bigg(\dfrac{\sin ^2 θ}{\cos θ} \bigg)

\rm  \bigg(\dfrac{\cos ^{\cancel{2}} θ}{\cancel{\sin θ}} \bigg) \bigg(\dfrac{\sin ^{\cancel{2}} θ}{\cancel{\cos θ}} \bigg)

\rm \cos θ \sin θ

RHS

\rm \dfrac{1}{\tan θ + \cot θ}

\rm \dfrac{1}{\frac{\sin θ}{\cos θ} + \frac{\cos \theta}{\sin θ}}

\rm \dfrac{\sin θ \cos θ}{ \sin ^2 θ + \cos ^2 θ }

\rm \dfrac{\sin θ \cos θ}{ 1 }

\rm = \sin θ \cos θ

\rm  \qquad \qquad LHS=RHS

Similar questions