Math, asked by Aadityarajak9867, 10 hours ago

Prove that (cosec theta-sintheta)(sec theta-cos theta)=(1)÷(tan theta +cot theta)

Answers

Answered by MaheswariS
0

\underline{\textbf{To prove:}}

\mathsf{(cosec\theta-sin\theta)(sec\theta-cos\theta)=\dfrac{1}{tan\theta+cot\theta}}

\underline{\textbf{Solution:}}

\textbf{L.H.S}

\mathsf{=(cosec\theta-sin\theta)(sec\theta-cos\theta)}

\mathsf{=\left(\dfrac{1}{sin\theta}-sin\theta\right)\left(\dfrac{1}{cos\theta}-cos\theta\right)}

\mathsf{=\left(\dfrac{1-sin^2\theta}{sin\theta}\right)\left(\dfrac{1-cos^2\theta}{cos\theta}\right)}

\mathsf{=\left(\dfrac{cos^2\theta}{sin\theta}\right)\left(\dfrac{sin^2\theta}{cos\theta}\right)}

\mathsf{=cos\theta\,sin\theta}---------(1)

\textbf{R.H.S}

\mathsf{\dfrac{1}{tan\theta+cot\theta}}

\mathsf{=\dfrac{1}{\dfrac{sin\theta}{cos\theta}+\dfrac{cos\theta}{sin\theta}}}

\mathsf{=\dfrac{1}{\dfrac{sin^2\theta+cos^2\theta}{cos\theta\;sin\theta}}}

\mathsf{=\dfrac{1}{\dfrac{1}{cos\theta\;sin\theta}}}

\mathsf{=cos\theta\;sin\theta} ------(2)

\textsf{From (1) and (2)}

\textf{L.H.S=R.H.S}

\implies\boxed{\mathsf{(cosec\theta-sin\theta)(sec\theta-cos\theta)=\dfrac{1}{tan\theta+cot\theta}}}

Find more:

7 cosecA -3 cotA =7 prove that 7 cotA - 3 cosecA =3  

https://brainly.in/question/8556778#

Similar questions