Math, asked by venkana1432, 10 months ago

prove that √cosecA+1/cosecA-1 -√ cosecA-1/cosec A+1= 2 tan A​

Answers

Answered by sandy1816
2

Answer:

</p><p>{\green{\underline{\underline{\huge{\mathfrak\red{your\:answer\:attached\:in\:the\:photo}}}}}}

Attachments:
Answered by umiko28
2

 \huge\mathbb{QUESTION \mapsto: }

⚛⚛⚛⚛prove that √cosecA+1/cosecA-1 -√ cosecA-1/cosec A+1= 2 tan A☯☯☯☯☯☯☯☯✅

using formula===========>

 \sf\ 1 +  {cot}^{2} \theta =  {cosec}^{2} \theta \\  \\  \sf\ \implies:  \boxed{ \sf{cot}^{2} \theta} =  {cosec}^{2} \theta - 1

__________________________

 \huge\mathbb{SOLUTION\mapsto: }

 \sf\  \frac{ \sqrt{cosec \theta + 1}}{ \sqrt{cosec \theta - 1} } -  \frac{ \sqrt{cosec \theta - 1} }{ \sqrt{cosec \theta + 1} }   \\  \\  \bf\  \implies: \frac{({ \sqrt{cosec \theta + 1}})({ \sqrt{cosec \theta + 1}}) - ({ \sqrt{cosec \theta - 1} })({ \sqrt{cosec \theta - 1} })}{ { \sqrt{cosec \theta - 1} } \times { \sqrt{cosec \theta + 1}} }  \\  \\  \bf\  \implies: \frac{(cosec \theta + 1) - (cosec \theta - 1)}{ \sqrt{ {cosec}^{2} \theta -  {1}^{2}  } }  \\  \\ \bf\  \implies:  \frac{ \cancel{cosec \theta }+ 1  \cancel{ - cosec \theta} + 1 }{ \sqrt{ {cosec}^{2}  \theta - 1} } \\  \\ \bf\  \implies: \frac{2}{ \sqrt{ {cot}^{2} \theta } }  \\  \\ \bf\  \implies: \frac{{2}}{cot \theta}  \\  \\ \bf\  \implies:{2 \times  \frac{1}{cot \theta}}  \\  \\   \bf\boxed{   \sf\underline{ \implies:2tan \theta  \:  \:  \: \ddot \smile}}

Similar questions