Math, asked by ajju27, 1 year ago

prove that (cosecA-cotA)^2=1-cosA/1+cosA

Answers

Answered by maroon5
7
here u go this the proof
Attachments:
Answered by snehitha2
23
 = (cosecA -cotA)^{2} \\\\ = ( \frac{1}{sinA} -  \frac{cosA}{sinA} )^{2} \\\\ =  \frac{(1-cosA)^{2}}{sin^{2}A} \\\\ =  \frac{(1-cosA)^{2}}{(1-cos^{2}A)} \\\\ =  \frac{(1-cosA) (1-cosA)}{(1-cosA)(1+cosA)} \\\\ =  \frac{(1-cosA)}{(1+cosA)} \\\\ Hence \:\: proved! \\ \\ cosecA = 1/sinA \\ cotA = cosA/sinA \\ sin^{2}A = 1-cos^{2}A
Similar questions