Math, asked by janakiramnaidu914, 5 months ago

prove that (cosecA-cotA)²= (-cosA/1+cosA)

Answers

Answered by kaushik05
8

To prove :

 \star \:  {( \cosec \alpha  -  \cot \alpha )}^{2}  =  \dfrac{1 -  \cos( \alpha ) }{1 +  \cos( \alpha ) }  \\

LHS :

 \implies \:  {( \csc( \alpha ) -  \cot( \alpha )  )}^{2}  \\  \\  \implies (\dfrac{1}{ \sin( \alpha ) }  -  \dfrac{ \cos( \alpha ) }{ \sin( \alpha ) } ) {}^{2}  \\  \\  \implies \:  {( \dfrac{1 -  \cos( \alpha ) }{ \sin( \alpha ) } })^{2}  \\  \\  \implies \dfrac{ {(1 -  \cos( \alpha )) }^{2} }{ { \sin }^{2}  \alpha }  \\  \\  \implies \:  \dfrac{ {(1 -  \cos( \alpha )) }^{2} }{1 -  { \cos }^{2}  \alpha }  \\  \\  \implies \dfrac{ {(1 -  \cos( \alpha )) }^{ \cancel{2}} }{(1 +  \cos( \alpha )) ( \cancel{1 -  \cos( \alpha ))} }  \\  \\  \implies \:   \frac{1 -  \cos( \alpha ) }{1 +  \cos( \alpha ) }

LHS = RHS

Proved .

Formula :

 \star \:  { \sin}^{2}  \theta +  { \cos}^{2}  \theta = 1 \\  \\  \star \: (x + y)(x - y)  = {x}^{2}  -  {y}^{2}  \\  \\

Answered by Anonymous
14

Answer:

  • Please refer to the attachment ✔️
Attachments:
Similar questions